Intercomp Ltd.

MinelT"

Automated Extraction of Business Rules
from Legacy COBOL Applications
to Java Objects and Enterprise Java Beans

White Paper

October 1999

Copyright © 1999 by Intercomp Ltd.

Copyright © 1999 by Intercomp Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, translated, transcribed, or transmitted in any form or by any means, without the
prior written permission of Intercomp Ltd.

AnalyzelT, MinelT, MigratelT, eMaker, and the Intercomp logo are trademarks of
Intercomp Ltd. All other product names or brand names are trademarks or registered
trademarks of their respective owners.

Intercomp Ltd.

6 Maskit Street

Herzliya 46733
Israel

Tel: +972-9-9526777
Fax: +972-9-9526170
E-mail: info@cobol2java.com
Web Site: www.cobol2java.com

November 30, 1999

Contents

About Intercomp Ltd. iv
1. Legacy System Challenge 1
The Problemccocoiiriiiiicce ettt e 1
The Core Business Has Not Changedoooeiiiiiiiniiiiiiiieee ettt 1
Unlocking the Power of EXiSting SYSIEMSc.viviviriviriiiriririiecrieriesience e seeeenesnesnesnessnesnessseesnes 2
2. MinelT Solution 3
Compiler-Centric APProachc.cociiiiiiiiiiii ettt 3
LeXACal ANALYSIS 1.uvveiviiiriiiiiiieirieereerieesiaestesresreaseesseesseessseasseessaessaessnessaessnesssesssessseesssesssesssesnseensees 3
SYNTACTIC ANALYSIS c.eeeeiiiiieiie ettt ettt b et bt et eaee e e e sbe e saeesane e 4
SEMANTIC ANALYSIS 1.vviivveiieirieirieerieerirerirerereeertesreesseesseeseeseessaessaesssessnesssessseesseesssesssesnseesseessaessaessaenns 4
Refining the Parsing RESUILSc.ccoiiiiiiiiiiii ettt 5
Creating JAVA ODJECTS ...viviviririrrirerieeriesieiriesereseerseeseesaesnessnesssesssessseesseessessssessseenseenseessaessaessaessaenns 5
3. Business Rules Extraction 7
Locating Candidates for Business Rules..........cccoiiiiiiiiiiiiiiiiece e 7
Porting Business RUleS 10 JAVA........ccvvvirriioieiieiiiriese e et ae e s e snseenseesnessaesenessnenes 8
4. Advantages of Using Intercomp’s MinelT 9
Appendix: MinelT Process Work Flow 11

Copyright © 1999 by Intercomp Ltd. iii

About Intercomp Ltd.

Intercomp Ltd. is a subsidiary of Crystal Systems Solutions (NASDAQ: “CRYS”) and a Formula
Group company (NASDAQ: “FORTY™).

Intercomp’s line of products is based on a set of compiler-centric software tools that provide a
comprehensive automated solution for the migration of legacy mainframe and non-mainframe
COBOL applications to Java N-tier client/server e-commerce applications.

The set of products, certified by Sun Microsystems as “100% Pure Java,” offers its users the
ability to analyze their legacy systems, reengineer and convert them into a new N-tier paradigm.

About Crystal Systems Solutions Ltd.

Crystal Systems Solutions Ltd., and its subsidiaries, provide Fortune 500 companies, and others,
with assessments, conversion methodology, software and professional services for all their
mainframe and non-mainframe based activities with minimum investment in manpower,
resources, and time.

Partial Customer List: FORD Motor Co., Kraft Foods, Farmer Insurance Group, KeyCorp, MCI,
BMW, MetLife, United Technologies Pratt & Whitney, Blue Cross / Blue Shield, Phillips
Petroleum, Ralston Purina, Alex Laurie Factors (UK), Reynolds Metal, Medical Mutual of Ohio,
El Al Israel Airlines, Bank HaMizrahi, Bezeq (Israeli PTT), Bank Leumi—Israel

Crystal Systems Solutions works both independently, and in conjunction with local business
partners worldwide who provide project management and system integration activities in
conjunction with its products. The list of business partners includes Ernst & Young LLP, Logica
Ltd., EDS, SAIC, CGI Informatik GmbH and others.

About the Formula Group

Formula Systems Ltd. (1985) is an information technologies company principally engaged,
through its subsidiaries and affiliates, in the development and marketing of proprietary software
products and in providing information systems solutions. Formula Systems has a number of
subsidiaries which are traded on the Tel-Aviv Stock Exchange (TASE), as well as subsidiaries
which are traded on NASDAQ. Additionally, Formula Systems itself is traded on the TASE and
has ADR’s listed on NASDAQ. Between 1994 and 1998 Formula Systems’ revenues grew to
over $250 million making Formula Systems the largest publicly-traded software group in Israel.
Formula Systems currently employs a staff of over 3,500 employees of which more than 3,000
are computer experts.

Strategic Partnerships of the Formula Group: Formula Systems has developed partnerships
with leading players in a broad range of ficlds. Formula Systems’ strategic partners include,
among others, BAAN Company, Cincinnati Bell information Systems Inc., Cooper Industries
Inc., Ernst & Young LLP and Informix Software Inc.

Key Customers of the Formula Group: ABB, Amdocs, AT&T, Bell Atlantic, Bezeq, Coca-
Cola, Comverse, Deutsche Telekom, Dow Chemical, ECI Telecom, Elect. de FranceEskom,
FAA, Ford GEC Alsthom, Informix, Israel Electric Corp., Israel Air- Force, Keycorp, Krupp
Kraft, Scitex, Telecom Asia, Telstra, Tivoli, Wharf Cable.

iv

Copyright © 1999 by Intercomp Ltd.

1. Legacy System Challenge

The Problem

In the last few years, the message “the Internet changes everything” has become one of the main
axioms in the I'T world. Indeed, it changed the concept of information and its usage in worldwide
business, and its full implications are far from being determined or predictable. Yet, one thing
has not changed: information is still a major and fundamental factor in an organization’s success.
This new era of e-business and Internet communication poses an acute problem to many CIOs:
the valuable information that has been accumulated throughout the years, which resides in the
organization’s IT applications, is deployed in an old, closed and inflexible architecture.
Nevertheless, this information is critical to an organization’s competitiveness in a fast developing
business environment; competitiveness that relies today on developing e-commerce capabilities
and an open and flexible IT environment. An example of this situation is clearly seen in the
mainframe world: 70% of the software is implemented via obsolescent platforms such as
COBOL programs, CICS transactions, VSAM files, etc. Due to their proven stability and
reliability, they have supported the core business applications of major organizations; however,
they cannot support many of the developments that have already taken place in the IT world, and
many that are still unfolding as the Internet, indeed, “changes everything.”

The Core Business Has Not Changed

About 70% to 80% of legacy applications s are composed of business rules that are “wrapped”
and supported today by obsolescent legacy technology. Hundreds of staff-years have been
invested in these legacy applications. Are CIOs really willing to throw it all away? The
company’s complex business rules are intertwined in the existing application structure. Since
these business rules comprise the very core of the organization’s competitiveness, their logic
should be kept intact and reused in a new technological environment, once they are identified and
extracted.

An illustration of this situation, are companies in the financial sector, such as banks and
insurance companies. A close look at these companies’ business processes reveals that the core
business of those companies has not changed because of the Internet and information evolution.
Banks still loan money to their customers and therefore still calculate interest rates. They were
doing so long before technology was there to support it, and will probably be doing so no matter
what technology evolves next. Insurance companies still provide insurance to customers, and
therefore still gather, calculate and store policy information according to each customer’s
specific needs and demands. All these calculations, from the simplest to the most complex, are
still useful to these companies. They are these financial organizations’ business rules.

Copyright © 1999 by Intercomp Ltd. Page 1

1. Legacy System Challenge MinelT White Paper

Unlocking the Power of Existing Systems

As the example in the financial sector, the major problem with these organizations’ business
rules is that they are “imprisoned” inside obsolescent IT architecture. The following analysis
explains where the business rules reside in IT applications, and how can they be extracted and
separated from the flow of applications.

A typical application contains several components:

o Code that handles the data: Examples of this component are segments of the code that
handle data storage, data retrieval, etc. These segments of code are by definition architecture-
dependent, since data that is stored on files will be accessed by code that is written in one
way, while data that is stored in a relational database would be accessed by code that is
written differently.

o Code that handles the display of information: Examples of this component are segments of
code that handle 3270 screens, or code that handles reports. Much like the case of data
access, the code that handles the display of information is dependent on display devices that
are used by specific architecture.

o Code that handles calculations: These segments of code are the major component of an
application where business rules can be found.

Some parts of the original application must be discarded when moving to a new architecture, as
they cannot be reused. These parts are, for instance, the segments of code that handle data access
or display information on the application’s screens.

Architecture-dependent code also exists in the calculation component of the application, since it
is usually implemented in a language such as COBOL, and may be using external services such
as CICS. Both the language must be replaced by a newer language (an object oriented one such
as Java) and the external services replaced by equivalent services in the new environment.

In order to unlock the power of existing systems, the business rules of these systems need to be
extracted, and then ported to a newer architecture. To achieve this purpose, the code that contains
the organization’s business rules must be separated from the rest of the application code, and
then ported to a new language so it can be used in the new environment.

Page 2 Copyright © 1999 by Intercomp Ltd.

2. MinelT Solution

Intercomp’s MinelT provides a comprehensive solution for the mining of business rules. With
the MinelT tool, you are able to locate business rules originating from various sources (such as
COBOL programs and copybooks), extract them out of the legacy code, and port them to Java in
an automated way.

Compiler-Centric Approach

The capabilities of MinelT to locate, extract and port business rules, are based on an engine
which is essentially a “smart compiler.” This compiler-centric approach gives MinelT an
automated capability to analyze and understand the semantics of business rules; without it,
business rules mining would be a labor-intensive and tedious job.

The kernel of the MinelT product is a large multi-phase compiler package that supports a wide
range of COBOL dialects including embedded software packages such as CICS (Customer
Information Control System), SQL (Structured Query Language), DDL (Data Definition
Language), BMS (Bitmap Screens), etc.

The basic translation scheme is syntax directed and uses mapping techniques in order to achieve
maximum clarity and efficiency in the resulting Java source code.

The compiler builds large data structures that semantically describe the application. This
description can be saved as an IDE (Integrated Development Environment) file, which enables
the user to refine or change the description and perform the translation at a later time.

There are multiple information-collecting phases that take place during compilation: lexical,
syntactic and semantic. The final phase performs the actual translation of the application into
Java using the results of the previous phases. The original source code is significantly improved
by means of the translation schemes used by the translator in conjunction with the information
collected.

Lexical Analysis

The input source code file is lexically analyzed. The lexical analyzer partitions the input stream
into character strings by matching them with a set of predefined regular expressions. The
constructed linked token sequence provides a list of terms that is based on the source file. In
addition, each token object contains the exact location of its string; the complete token sequence
is used as a base leaf sequence for the parsing tree.

The set of predefined regular expressions is large enough to match a wide range of COBOL
terms from different versions of the language including special forms of embedded statements,
such as CICS, SQL, etc.

The lexical analyzer does not impose strike rules on the source program format, and relates to it
as a virtual space with strings to be matched. However, it does recognize and handle the various
areas (sequential number, area A and B, etc.).

Together with the symbol table, the lexical analyzer splits the terms from the input program into
syntactic categories. Special internal terms such as white space and comments are also linked
into the token sequence but are not passed to the syntactic analysis phase.

Copyright © 1999 by Intercomp Ltd. Page 3

2. MinelT Solution Minel T White Paper

At the end of the process this sequence is actually a map of the source code file in the main
memory. This sequence is used as the basis for most of the operations that will process this file.

Syntactic Analysis

The purpose of this unit is to build a parse tree of the source code file based on the selected token
provided by the lexical analyzer.

The syntactic analysis is conducted by a large set of context free grammars. This collection of
grammars is designed to catch a wide range of COBOL versions, COBOL dialects and embedded
statements from other supplementary packages such as CICS, SQL, etc.

The parse tree nodes are designed using a special strategy that expresses grammatical
equivalence and reduces and simplifies the semantic analysis and therefore the translation
process and results.

The parse tree is fully object oriented and implements smart inheritance relations between its
nodes. The main principle of the strategy is to design the inheritance relation in such a way that
properties with major semantics will be at the bases of the inheritance structures, while nodes
that add minor semantics will be derived from these bases. This strategy also helps to split the
different parts of the code between different nodes thus helping to build good structured
software, where each node is an object that knows its own semantics.

As in the previous phase, this phase also creates a data structure, i.e., a parse tree for later use.
Splitting the code into different objects simplifies the translation scheme and improves code
readability and reusability.

Semantic Analysis

Semantics analysis captures the semantics of the different object structures, the meaning of their
position in the source code file and the way they relate to each other. An additional purpose is to
understand the ideas that hide behind the code. These ideas are expressed by the parse tree and
the token sequence.

Understanding the programming techniques that were used by the original COBOL programmers
and implemented in the code can help later in the translation phase by producing much more
readable and efficient Java code.

There are three main reasons why it is useful for the compiler to understand the programming
techniques that were used in the source program:

o 7o facilitate the change in the software architecture. Legacy COBOL source programs were
programmed using concepts of structured procedural programming style while Java source
code is based upon object-oriented programming and event-driven programming style.

o To retain the ideas behind the code. This information helps in generating new code that
keeps these ideas and by doing so makes it easier for the programmers to understand the
differences between the old and the new parts of code. In addition it helps them to find their
way through the many newly generated lines and modules.

o To improve the methods used by the original programmers. Not all programs were written
clearly and efficiently. Furthermore, during years of maintenance, COBOL code frequently
becomes a patchwork of fixes and original written in different styles. However, grouping the

Page 4 Copyright © 1999 by Intercomp Ltd.

Minel T White Paper 2. MinelT Solution

knowledge of programming techniques in sophisticated software can help to transform
inconsistent techniques into consistent and efficient ones.

Refining the Parsing Results

This process reviews and analyzes the repository in order to fine tune MinelT decisions.

The legacy system analysis provides a conceptual description of the system that can be enhanced
by adding new functionality or making changes that improve efficiency. These enhancements
may be achieved by using the compiler’s Decisions Mechanism.

Creating Java Objects

The translation phase completes the compilation, and translates the data structures built during
the previous phases.

The translation is directed by a predefined collection of schemes that specify the base structures
of the resulting new Java objects.

Copyright © 1999 by Intercomp Ltd. Page 5

2. MinelT Solution Minel T White Paper

Page 6 Copyright © 1999 by Intercomp Ltd.

3. Business Rules Extraction

The Business Rules mining process consists of two phases:
e Locating candidates for business rules

e Porting them to Java

Locating Candidates for Business Rules

In general, a business rule can be regarded as specific functionality that is related to a piece of
data. This definition of a business rule is similar to an object, which has methods (i.e.,
functionality) and data. The business rule may have input data with which it will operate, as well
as output data, which serves for returning its functionality results. The input data may come
through data files or input screens, where the data is input manually. The output data may be data
files, reports, screens and/or other output methods.

Using this definition of business rules, with this terminology, two basic methods can be used in
order to locate them:

o Start with data, either input data or output data, and then locate the business rule
functionality. Examples of this type of process are:

¢ Looking for different parts of the code, which handles the same data, since different parts
of code that are referencing the same data may be related to the same business rule.

O Selecting a part of the data that serves as a result at a specific point of the code and
searching backwards for all influencing code.

O Selecting a part of the data that serves as input at a specific point of the code, and
searching forward for all the references to that part.

o Start from the opposite direction—with the functionality—and then locate the data. An
example of this type of process is:

¢ Looking for different parts of the code that have a similar flow. This similarity may
indicate belonging to the same business rule.

MinelT provides several tools for applying locating methods:

e High Level Flow Graph — describes the flow and interrelations between the objects
composing the application, such as programs, data files, screens, etc.

e Low Level Flow Graph — describes the inner flow of a specific program and the interrelations
of its paragraphs with other programs, data files, screens, etc.

o Pattern Matching — enables the user to indicate a pattern of flow, access or any other
phenomenon in the program and search for matching occurrences.

o Data Locating —locates usage of a specific data item (taking into consideration the different
variable names used for the same data).

Copyright © 1999 by Intercomp Ltd. Page 7

3. Business Rules Extraction Minel T White Paper

Porting Business Rules to Java

Once identified, the business rules can be ported to Java using the migration capabilities of
MinelT.

During the porting process, the MinelT tool generates Java classes, methods and variables from
the COBOL application, based on information gathered in the previous phase of locating the
object candidates.

There are several porting rules regarding that are given as suggestions by the Minel T
mechanism, and may be selected by the user:

External references from the mined section — In cases where the selected section includes a
GO TO or a PERFORM statement, the user should decide whether or not to generate that
statement in the Java Object. Another related decision is whether or not the referenced part
should be ported as well.

External resource references — If the section that was selected uses resources such as files or
screens, a decision must be made either to generate that reference in the Java code or to pass
that information to and from the object as parameters.

Variable references — Variables that are found in the selected section can become local
variables of the object or parameters to the object. The user can accept or override the
automatic suggestion of the tool, which is based on the usage of those variables in other parts
of the code where they were found.

Naming conventions — During the porting of the code, the user may keep or override names
of variables and external references. This becomes especially useful and important when
porting code from different programs into the same object, as the same data can be
referenced differently in each of the programs. An example is naming Social Security
Number differently (SSN, SSNO, SSNUM, etc.) when in fact all these names refer to the
same piece of information.

Page 8

Copyright © 1999 by Intercomp Ltd.

Minel T White Paper 4. Advantages of Using Intercomp’s Minel T

4. Advantages of Using Intercomp’s MinelT

There are several solutions for renewing applications:
e Face-lifting the application

e Rewriting the application

o Reusing parts of the application

While face lifting is a suitable solution in some cases, the core of the application is left as it was
before: obsolete, hard to maintain, not flexible to changes, and not naturally integrated with the
new e-commerce environment.

A comparison between rewriting an application and mining for the purpose of reusing the
application components, reveals several differences:

e Time to market — The time it takes to rewrite an application is significantly longer than
mining and reusing parts of the application. As time to market is a very crucial aspect of any
company’s existence and competitiveness in the fast-paced IT world, the difference between
these two solutions may be crucial.

e (Cost— The cost of rewriting an application is significantly greater than mining and reusing
parts of it, since rewriting involves much more effort and time.

o Risk —Rewriting an application poses a much greater risk to the organization than mining and
reusing. The risk factor involves different aspects of a rewriting project :

O The chances that such a project will be completed successfully is estimated to be a 20%
probability.

O When porting business rules, using automated compiler and compilation techniques,
instead of rewriting an application manually, the chance of err is significantly lower.
Testing of the automatically ported business rules also is easier and safer.

o “Reinventing the wheel” — When rewriting an application, it is in fact being reinvented,
including parts that do not need to be rethought since their functionality has not changed
(i.e., business rules). Using MinelT enables benefiting from both worlds: on the one hand,
designing the new application according to an object oriented methodology, and on the other
hand reusing low-level objects from the old application.

Copyright © 1999 by Intercomp Ltd. Page 9

4. Advantages of Using Intercomp’s Minel T MinelT White Paper

Page 10 Copyright © 1999 by Intercomp Ltd.

Appendix: MinelT Process Work Flow

The following sequence of screens demonstrates the work flow for the MinelT process:

High Level Graph

&% JMaker Graph [_[=]x]
-F- File Edit ‘workgpace “iew Buld JavaProect Graph Window Help — ﬁlﬂ
g mE® RSN TR 2
¢ QL
m ‘WorkSpace MewHDS'
E\-g NewHDS Program | []
{23 Cobel I_
HED Copy Transaction]
=3 BMS BMstap |
D Java

{23 Configuration

& T
el

Link
Fieturn]
Use Map
by Workspace) Classes E B S
Storage | gt Files | g% Tables oo
Copy I (@ Cobal -
¥Welcome To JavaMaker... =]

-
;I L2
_‘b Translate I& D ata Madeling
For Help, press F1 -

Copyright © 1999 by Intercomp Ltd. Page 11

Appendix: MinelT Process Work Flow Minel T White Paper

Low Level Graph

&3 JMaker Graph [_[&] %]
4 File Edit Workspace Yiew Buld JavaPioject Graph Mindow Help =& %]
O@Ea ol P F e R 2
@ e L
=T WorkGpace MewHDS' = Progiam -
= ¢Z NewHDS
%] Cobal Transaction -
o Paragiaph |
w1 Java Exit
5
[_1 Configuration - -
EMS Map
Fall Thiough [r—
Perform fr—
Conditional Perfarm []
Gato []
Conditional Gata []
h Cal _—
Hetl
Link P
Retum
Use Map

by Workspace Classes | B BMS

i Storage | o Files J ot Tables
Copy I (= Cobal

‘Welcome To JavaMaker...

|

Fx Translate | 55 Data Modeling

an

For Help, press F1

Find Pattern—Using “ACCOUNT” as Hook to Find Business Rule

&5 JMaker Acct04
File Edit ‘workspace Wiew Bulld JawaProject ‘window Help -7 5[
ERE @Y tBRB SR TER

i) 2l

= E;’:SW;T)I:EWHDSI Pattern Mame: | ‘ Search
ewl
"5 Cobol EXEC $OL ROLLEACK WORK RELEASE . ARCDUNT
Aol HOVE ' UNENCUN 0L ERRCR' TO ERR-MESSAGE. Dt
- EXEC CICS XCTL PROGRAM('LCCTOS')
Acol0? COMMAREA (COMMAREA-FOR-ACCTOS) LENGTH(38) Clear Contents
Acctl3
Acctld ¥ All Files Advanced :>> |
Acclls CHECK-DEFOSIT-FAR.
Aoctbich [oy -]
{1 Copy amples\HewHD S \MewHDS Cobolae B
D BMS amples\MewHDS\NewHD S Copyhdc 8
] Java amples\MewHD S \MewHD S\ Copyhbe, 1 J
{1 Configuration MOVE BANK-NUM amplesiMewHDSWewHDSNBM S A .. 1
o HOVE BRANCH-HUN amplestewHDE\NewHDSYEMS Ac 1
amnplestewHDS W ewHD S WBMSAAS 1
HOVE ACCOUNT-NUI oYt =
MOVE ANGUNTI (4] ,
MOVE CASH-DEPOSIT-CODE TO TRAMNSTYPE
HOVE O TQ CHECENO.
GO TO WRITE-TRAMNS-FAR.
WITHDPRAWAL-FAR.
HMOVE BAMNE-NUN TQ BANK
MOVE BRAMNCH-NUN TQ BRANCH
MOVE ACCOUNT-NUN TQ ACCOUNT
"&b Wakspace | 0] Dlasses | B BMS MOVE AMGUNTI TG AMOUNT
% Storogs || iy Fies | iy Tables HOVE WITHDRAWAL-CODE TO TRANSTYPE
MOUR N TO CHROKHO. -
Copy | (& Cobal a | _’l_l
‘Welcome To JavaMaker...
]
ety Translate & Diata Modeling
For Help, press F1 ol [

Page 12 Copyright © 1999 by Intercomp Ltd.

Minel T White Paper

Appendix: MinelT Process Work Flow

Find Pattern—L.ist of Occurrences Throughout the Application; Select

Item From List to Show Source

&% JMaker Acclbich HE R

ile Edit ‘Workgpace View Bulld JavaProject Window Help =8|
EEHE andE 2B R 2R
+ -
m WhorkSpace NewHDS' + _I Pattein Mame | | Search |
= g HewHDS W ACCOUNT
s Eub:c:mn EXEC 50L __Gpliors.._ |
Aot UPDATE ACCOUNTS
- SET SBALANCE = SBALANCE + :AMOUNT-VAL Clear Cantents
Aot WHERE SEBANE = :BANE AND
- SERANCE = :BRANCH AND 5 alFiks [m—— |
et K = :
accibtch . END-EXEC.
=20 Copy N
Acchaco
vg Accibtch ?UPDATE—UITHDRAUAL—PAR.
Acchoode .
Acchcus
Accher EXEC SQL
Aechmnu UPDATE ACCOUNTS
Acctan SET SBALANCE = SBALANCE -
£33 BMS WHERE SEANE = :BANE AND
- T8 Acctacom SBRANCH = :BRANCH AND
Acchousm S_= :
Acohern . END-EXEC.
Acctmnum .
- B Acctranm
[]‘D Java UPDATE-CHECE-DEPCSIT-FAR.
{E3 Canfiguration :
EXEC SQL
UPDATE ACCOUNTS
SET SBALAMWCE = SEBALANCE + :AMOUNT-WVAL
WHERE SBANE = :BANE AND
by Workspace |) Classes BMS SERANCH =
Storage @ Files [g Tahles S_=
- FNN-FXRC. -
Copy | (3 Cobl 4 _’l_l
Yelcome To JavaMaker... -
Kl :

by Translate [ata Modeling

For Help. press F1

_ 1 I

Copyright © 1999 by Intercomp Ltd.

Page 13

Appendix: MinelT Process Work Flow Minel T White Paper

Find Pattern—Selection for Creating New Method

File Edit ‘Workspace View Buld JavaProject Window Help =] %]
OEEE ol | sBmE 2R T B

=1} WorkSpace NewHDS' Pattern Name
=-¢Z NewHDS ACCOUNT
=8| ED.hDI Dplions.
€ Acctll
Acctll
Aectl2
Acctl3
T aeoid W AllFies Advanced »>>
Acctls
C Acctbch
(= Cony cotbtch

5
& Acch 54N ewl 2l ‘obal)
ceace \NewHDS NewHDS Cophcetbtch 8
1
1
1
.

Soach |

Clear Contents

R Wl

i)

Ky

1

Acclbteh s4HewHDS WNewHDE\Copyhicotonds
Accteads 3N ewHD S \HewHD S\BMS dectacom
Acclous 54HewHDS tNewHDS\BMS ectmn..
Acclen j\h..‘uhc\mm‘.unc\DM&:\A..“».W,..
Acctmnu

' e e
5
g

]}_(Acclousm
B Acctenm
]}_(Acctmnum
B Acctranm
+-] Java
#-{] Configuration

<y Workspace Classes | B BMS
[TCory | (& Cobal
sk Storage J ks Files J st Tables 4 LH

Welcome To JavaMaker... -
]

*5 Tramslate |52 Data Modeling

For Help. press F1

Create New Object—Adding New Method

File Edit ‘Workgpace View Build JavaProject Window Help .- ﬂ
DEHE W BB SRR \

d G0 TO HARD-ERROR-PAR. ﬂ

= (¥ ACCTO4

3 aCCTOl
¥ ACCTO4
> ACCTOS SQL-ERRORS.
W ACCTMNUI
W ACCTMNUO

W ACCTRANI
W ACCTRAND EZEC 50QL ROLLEACK WORE RELEASE

W CASH-DEPOSIT-COI HCOVE TO ERR-MEZZAGE.
% CHECK-DEPOSIT-CC EZEC CICS EZCTL PROGRAM(
#- W DFHCOMMAREA COMMARER (COMMAREAL-FOR-ACCTOS) LENGTH(3S)

H W MISC
- W NEW-TRANSREC
v SN
W TRANSRECLNG
W WITHDREWAL-LOD
8§ CASH_DEPOSIT_P:
B CHECK_ACCOUNT_
8 CHECK_DEPOSIT_F
8 CICS_ERRORS
8 HARD_ERROR_PA!
8 T
8 PEAFORM_OPER_f—
B RET_TO_MAIN
8 SOFT_ERAOR_PAF
8 50L_ERRORS
B WITHDRAWAL_Pal

B WRITE_TR&NS_PA ~
4 » WITHDRAWAL-PAR.

[T Copy (= Cobol
4y Workspace | gl Classes | Bl BMS

b Storage | gy Files | by Tables | -

] [[

0641

YWelcome To JavaMaker... =]

Translate | i Data Modeling

For Help, press F1

iﬁﬁlall‘ . Inbax - Dutiook Exprass | 9 Palm Desktop | 2] Exploring - BMP151193 | 4 Paint Shop Pro | £1JMaker - [Acct04] B SEOD 2m

Page 14 Copyright © 1999 by Intercomp Ltd.

Minel T White Paper Appendix: MinelT Process Work Flow

Create New Object—Defining New Method

File Edit ‘Workspace View Buld JavaProject Window Help =
S EEEE R R A
I (¥ ACCTO4 = GO TC HARD-ERROR-FAR. 05890000 =
o (3 BCCTON N 05930000
3 4CCT04 05870000
e (% BCCTOS SQL-ERRORS. 06010000
- W ACCTHMNUIL N gggggggg
- W ACCTMNLO
B W ACCTRANI * HANDLE SQL ERRORS 05130000
e W ACCTRAND EXEC 30L ROLLEBACK WORE RELEASE EMD-EXEC. 06170000
W CASHDEPDS TN MOVE ' UNENOWN SOL ERRCR' TO ERR-MESSAGE. 06210000
e g CHECK-DEPOSIT L EXEC CICS XCTL PROGRAM('ACCTOS') 06250000
B ORHCOMMARE
B MISC * 06330000
] =05370000

G- W NEW-TRANSREC
o SN
W TRANSRECLNG
- W WITHDR&MWAL-COD

Methad: IDEF'DSil

§ CasH_DEPOSIT Pt Fackage: [oom MewPack =l
- § CHECK_ACCOUNT

§ |CHECK_DEPOSIT_F
- B CICS_ERROAS Dlass: [MewClass =

B HERD_ERROR_Paf
- 8 INT

8 PERFORM_OPER_F
- 8 RET_TO_MAIN

8 SOFT_ERRDR_PAF
- 8 SOL_ERRORS

B WITHDREW/AL Paf

v B WRITE_TRANS_PAS
4 »

Copy (3 Cobol = 07090000
oy Warkspace Classes BHS + URITE WITEDRAVAL TRANSACTION TO FILE. 07130000
it Storage | gty Files | gty Tables " 07170000 =l

Welcome To JavaMaker... =

-
] -
2y Translate | Data Modsling

For Help. press F1
R start| jinbox - Dutiook Express | 4 Paim Deskiop | @) Exploring - BMF151183 | SpPaint Shop Fro [[Zomaker -facenar | [B0 E

Cancel

WITHDRAWAL-FAR. a7010000
07050000

Create New Object—COBOL Code vs. New Method in Java

Maker NewClass.java
File Edit ‘wWorkgpace View Build JavaProject Window Help

OSFHE oo EIE A \

= (¥ ACCTO4 =]
3 4CCTO G0 TO HARD-ERROR-PAR. = package cowm.NewPack;
O ACCTD4 inpoTt com.acct0g. ;
¥ &CCTO0S
W ACCTMNUI SQL-ERRORS.
W ACCTMNUD
W ACCTRANI
W ACCTRAND public class MewClass extends TempDefault
W CASH-DEPOSIT-COI EXEC S0QL ROLLEACE WORK RELEASE {
W CHECK-DEPOSIT-CC HOVE To ER
#- W DFHCOMMAREA EXEC CICS XCTL PROGRAN| public NewClass()
#- W MISC COMMAREL (COMMAREL-FOR-LCCT i
#- 3 NEW-TRANSREC
W SN 3
W TRANSRECLNG CHECE-DEPOSIT-FPAR.
W WITHDREWAL-COD
B CaSH_DEPOSIT_P:
B CHECK_ACCOUNT_
B CHECK_DEFOSIT_F
B Cics_ERRORS MOVE BANE-NUN TG BA
B HARD_ERROR_PAf MOVE BRANCH-NUM To BR
BT HMOVE ACCOUNT-NUHN T AC public void Deposit (ChlFormattedDecinal ©
8 PERFORM_OPER_F— HOVE AMOUNTI TO AW { b
B RET_TO_MAIN MOVE CASH-DEPOSIT-CODE To TR neyTransrec.getBank () .setValue (bankNum
S SOFT_ERROR_PAR MOVE O Tix CH neyTransrec.getBranchi() .setValue (branc
B SOL_ERRORS neyTransrec.get Account [) .setValue (acco
S WITHDRAWAL_PAF G0 TO WRITE-TRANS-FPAR. neyTransrec.get mount (] . setValue (acctr

B WRITE_TRANS_FA = newTransrec.getTranstype () . setValue (ca
4 neyTransrec.getCheckno () .setValue (0) ;

] [()

[] Copw (= Cobol UITHDRAWAL-PAR. H

+ i
4y Warkspace | @ Classes | B BMS = JJ - LH

b Storage | b Files | gl Tables |

Accild =
AcctD4 - 0 error(s), 0 warning(s]
|

<% Translate [ik Data Modeling

For Help, press F1

Copyright © 1999 by Intercomp Ltd. Page 15

Intercomp Ltd.

6 Maskit Street
Herzliya 46733
Israel

Tel: +972-9-9526777
Fax: +972-9-9526170
E-mail: info@cobol2java.com
Web Site: www.cobol2java.com

j’

Q. A Subsidiary of
))) Crystal

Systems Solutions Ltd.

7\
C)

A Formula
Group
Company

